

 Navigation

 	
 index

 	
 next |

 	django-skel 1.5 documentation

django-skel

A modern Django 1.5 project skeleton.

[image: _images/skel.jpg]
Django is a great framework. Unfortunately, like any framework, it is only as
useful as the tools you use with it. This is where django-skel really
shines.

django-skel gives you a great project skeleton, complete with:

	Database migrations via South [http://south.aeracode.org/].

	Static file management via django-compressor [http://django_compressor.readthedocs.org/en/latest/index.html].

	Task queueing via Celery [http://celeryproject.org/].

	Helper utilities for working on the command line, via Fabric [http://docs.fabfile.org/en/1.4.2/index.html].

	Fancy documentation generation via Sphinx [http://sphinx.pocoo.org/].

	Awesome local debugging and analysis via django-debug-toolbar [https://github.com/django-debug-toolbar/django-debug-toolbar].

	Amazon S3 integration (for publishing static assets: css, js, images, etc.) via django-storages [http://django-storages.readthedocs.org/en/latest/index.html].

	CSS compression (for production environments) via cssmin [https://github.com/zacharyvoase/cssmin].

	JS compression (for production environments) via jsmin [http://pypi.python.org/pypi/jsmin].

	Memcache caching support via django-heroku-memcacheify [https://github.com/rdegges/django-heroku-memcacheify].

	PostgreSQL support via django-heroku-postgresify [https://github.com/rdegges/django-heroku-postgresify].

	A blazing fast WSGI server for serving production traffic via gunicorn [http://gunicorn.org/] and gevent [http://www.gevent.org/].

	Production application performance monitoring and usage statistics via newrelic [http://newrelic.com/].

	All the best practices I’ve come to learn with more than 4 years of Django
experience.

	Built in support for production deployments on Heroku’s [http://www.heroku.com/]
platform.

But, more importantly, django-skel gives you a really clean, simple, and
reliable project template for developers of any experience level.

If you want a best practices approach to Django, use django-skel and you
won’t be disappointed!

Follow the Guide Below to Victory!

	Prerequisites

	Getting Started
	Creating a New Project

	Install All the Dependencies!

	Running Your Site Locally

	Layout

	Developing
	Managing Your Settings

	Storing Static Assets

	CSS Best Practices

	Javascript Best Practices

	Running on Heroku
	Step 1 - Create Your Heroku Application

	Step 2 - Install the Addons

	Step 3 - Configure the Environment

	Step 4 - Spin It Up!

	Step 5 - Deploy Your Static Assets

	Extra Reading

Also...

Need help? Got a question? Want to post random pointless comments? Head over to
our GitHub issue tracker [https://github.com/rdegges/django-skel/issues] and
leave a message!

Wanna just hang out with some other bad-ass hackers like yourself? Say hi on
#heapify, or you could follow me on twitter [https://twitter.com/#!/rdegges].

 Copyright 2012, Randall Degges.
 Created using Sphinx 1.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	django-skel 1.5 documentation

Prerequisites

Before we go any further, I’m going to assume that you’ve got the following
things:

	You’re running some flavor of Linux or Mac (untested) as your desktop OS.

	You’ve got Django 1.5 installed somewhere (inside a virtualenv, preferably).

	You have an Amazon Web Services [http://aws.amazon.com/] account. This is
required if you want to use our production deployment tools. If you don’t
want to run your code in production, don’t worry about it.

	You have a Heroku [http://www.heroku.com/] account. Heroku is the best
python web host on the internet. If you’d like to deploy your site to
production, having an account there will be extremely useful.

	You have the Heroku toolbelt [https://toolbelt.heroku.com/] installed.
This only applies to you if you plan on deploying your stuff to production
(same as the above).

[image: _images/lets-do-this.jpg]

 Copyright 2012, Randall Degges.
 Created using Sphinx 1.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	django-skel 1.5 documentation

Getting Started

So you’re ready to start your next Django project! Let me be your guide. Over
the next few minutes we’ll be taking a magical journey together >:)

Creating a New Project

To create your new project, run the following command, substituting woot
for whatever you’d like to name your new project:

$ django-admin.py startproject --template=https://github.com/rdegges/django-skel/zipball/master woot
$ cd woot
$ ls
docs/ fabfile.py gunicorn.py.ini manage.py Procfile README.md reqs/ requirements.txt woot/ wsgi.py

The next thing you’ll probably want to do is remove my project docs:

$ rm -rf docs README.md

That way you don’t get the documentation you’re reading right now in your new
project.

Next, create your first django app for this project:

$ mkdir woot/apps/myapp
$ django-admin.py startapp myapp woot/apps/myapp

Lastly, create a Git repository for your new project, and commit everything:

$ git init
Initialized empty Git repository in /home/rdegges/Code/ex/woot/.git/
$ git add .; git commit -m 'First commit using django-skel!'
...

Easy, right?!

[image: _images/not-bad.png]

Install All the Dependencies!

Before I start writing code, I like to setup a virtualenv [http://www.virtualenv.org/en/latest/index.html] for myself–this allows me
to install all my project dependencies in a local installation, as opposed to
installing all of them globally on my box.

To install the local dependencies (that you’ll need to run your site locally),
run the following command:

$ pip install -r reqs/dev.txt
...

Note

If the pip command above fails, it means you’re missing some C libraries
that are required for some of the Python libraries to work. The ones you
need (on Ubuntu) are:

	libevent-dev

	libpq-dev

	libmemcached-dev

	zlib1g-dev

	libssl-dev

	python-dev

	build-essential

I also recommend you install postgresql-client, even though it isn’t required.

Bam!

[image: _images/happy.png]

Running Your Site Locally

Before you start coding, let’s bootstrap our SQLite database (for local
development), and test our the Django admin panel just to make sure
everything’s working:

$ python manage.py syncdb
...
$ python manage.py migrate
...
$ python manage.py runserver
...

Assuming everything’s working, you should now be able to visit
http://localhost:8000/admin/ in your web browser, and log in.

The syncdb command here just initializes our database, and the migrate
command applies our South migrations.

From now on, whenever you want to run your site locally for testing, you can
follow these standard Django conventions.

[image: _images/happy-big-smile.png]

 Copyright 2012, Randall Degges.
 Created using Sphinx 1.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	django-skel 1.5 documentation

Layout

Before we move on, I’d like to give you a quick tour of django-skel‘s file
layout:

.
├── fabfile.py
├── gunicorn.py.ini
├── manage.py
├── Procfile
├── reqs
│ ├── common.txt
│ ├── dev.txt
│ └── prod.txt
├── requirements.txt
├── woot
│ ├── apps
│ │ └── __init__.py
│ ├── __init__.py
│ ├── libs
│ │ └── __init__.py
│ ├── settings
│ │ ├── common.py
│ │ ├── dev.py
│ │ ├── __init__.py
│ │ └── prod.py
│ ├── templates
│ │ ├── 404.html
│ │ └── 500.html
│ └── urls.py
└── wsgi.py

6 directories, 19 files

fabfile.py is a utility script (written using Fabric [http://docs.fabfile.org/en/1.4.2/index.html]) that adds some helpful
shortcut commands. It can automatically bootstrap a Heroku app for you, and a
number of other useful things. You can run fab --list from the command line
to see its usage.

gunicorn.py.ini is our gunicorn [http://gunicorn.org/] web server
configuration file. It is optimized for large scale sites, and should work well
in any environment.

manage.py is our default Django management script.

Procfile is our Heroku process file–which tells Heroku what our three
types of services are: web, scheduler, and worker. To learn more
about this, see Heroku’s Procfile documentation [https://devcenter.heroku.com/articles/procfile].

reqs is a directory which contains all of our pip requirement files, broken
into categories by the environment in which they’re used. The common.txt
file contains all of our ‘shared’ requirements, the dev.txt file contains
all of our local development requirements, and the prod.txt file contains
our production requirements. This modular approach is taken to make development
as flexible (and intuitive) as possible.

requirements.txt is a Heroku specific file which tells Heroku to install
our production requirements only.

woot is the base Django site. Everything inside this directory is
considered your actual Django code.

woot/apps is a directory meant to hold all of your local Django
applications. If you wanted to create a blog app, for instance, you’d put
it here.

woot/libs is a directory meant to hold all of your local Django
libraries–code which doesn’t really fit into ‘applications’. This usually
includes stuff like templatetags that are used in various place, or other
helpful utility functions.

woot/settings is a directory which holds all of your Django settings files!
Much like our pip requirements, there is a settings file for each environment:
dev.py, prod.py, and common.py (shared settings). Feel free to edit
and tweak these to your specific needs.

woot/templates is a directory that holds all your Django templates. By
default, we only include a 404.html and 500.html, since those are used in all
Django projects.

woot/urls.py is your standard Django urlconf.

wsgi.py is your standard Django wsgi configuration file. Our webserver
uses this to figure things out :)

As you can see–everything is very straightforward. All standard Django
knowledge you have should easily apply to django-skel!

[image: _images/yeah.png]

 Copyright 2012, Randall Degges.
 Created using Sphinx 1.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	django-skel 1.5 documentation

Developing

[image: _images/computer-stare.png]
Now that you’ve got your project running locally and the basics covered, let’s
talk about development.

django-skel is optimized for a simple workflow:

	Develop code locally on your laptop using SQLite.

	Run your production code remotely on Heroku.

	Upload your static files (css, javascript, images, etc.) to Amazon S3 so that
they are served extremely fast to your end-users.

	Compress all your static files (css and javascript) so that end-users can
download them quicker. This also helps prevent copycats from copy+pasting
your code, since minified code is much more difficult to reverse engineer.

I’ve found that using this workflow is the most effective way for me to write
code. If your needs differ from mine, you can easily tweak django-skel‘s
settings by editing the files found in project_name/settings to your
liking. All the options you’ll find there are documented, and easy to
understand.

With that said, let’s discuss development!

Managing Your Settings

Managing your settings using django-skel is simple. Follow the rules below,
and you can’t go wrong:

	Place all your ‘common’ settings in settings/common.py. This includes
stuff like: Django apps you need to use in all environmnets (development,
production, etc.), global variables, etc.

	Place all your development-specific settings in settings/dev.py. ‘Nuff
said.

	Place all your production-specific settings in settings/prod.py.

	If you’re confused, follow the documentation links! I’ve heavily documented
the settings files, and included reference links to all the relevant
documentation. If you’ve got a question, or are confused about something,
consult the docs first!

Storing Static Assets

Always place your static assets (images, javascript, css, etc.) into a
sub-directory of your project folder called assets. If your project is
named woot, for instance, then you should place all your static files
inside of woot/assets.

The way I like to organize this is by doing something like:

$ mkdir woot/assets
$ cd woot/assets
$ mkdir {css,js,img}

Then I’ll place all my css files in woot/assets/css, my js files in
woot/assets/js, and my images into woot/assets/img.

This way, you’ve got a clear directory hierarchy, and anyone else that looks at
your code will immediately recognize what’s going on.

CSS Best Practices

One really great feature of django-skel is that it’s already optimized for
handling CSS files in the most optimial way possible. What this means for you,
as a developer, is that if you’re planning on writing / using CSS in your
Django project, you should keep the following in mind.

When you include a CSS file in your HTML, it normally looks something like
this:

<html>
 <head>
 <link rel="stylesheet" href="{{ STATIC_URL }}css/style.css" />
 </head>
</html>

That’s great and all, but by doing things that way you’ll miss out on a
powerful feature: CSS templating. Wouldn’t it be nice if you could use {{
STATIC_URL }} inside of your CSS files as well? That way you could write
nifty rules like:

body {
 background: url({{ STATIC_URL }}img/omgyea.png);
}

The above code snippet is great because it will work in both local development
mode (by having Django serve your image locally), as well as production mode
(by having Amazon S3 serve your image through its CDN). To make use of this
awesome functionality, all you have to do is modify your HTML template like
so:

{% load compress %}
<html>
 <head>
 {% compress css %}
 <link rel="stylesheet" href="{{ STATIC_URL }}css/style.css" />
 {% endcompress %}
 </head>
</html>

Using django-compressor [http://django_compressor.readthedocs.org/en/latest/index.html]
you get this functionality out of the box! Behind the scenes, django-compressor
will run your CSS files through the Django templating engine, which allows you
do the cool stuff mentioned above.

As an added benefit, in production mode, it will also minify your CSS files for
you (removing whitespace to save space). But more on that later!

Javascript Best Practices

Much like CSS best practices, django-skel is optimized for handling
Javascript code in the same way that it does for CSS (see the previous section
for details).

To make use of both the Django templating engine (so that you can use stuff
like {{ STATIC_URL }} in your Javascript code) as well as Javascript
minification and obfuscation, change your HTML templates from this:

<html>
 <head>
 <script src="{{ STATIC_URL }}js/script.js" type="text/javascript"></script>
 </head>
</html>

To this:

{% load compress %}
<html>
 <head>
 {% compress js %}
 <script src="{{ STATIC_URL }}js/script.js" type="text/javascript"></script>
 {% endcompress %}
 </head>
</html>

And that’s all there is to it!

 Copyright 2012, Randall Degges.
 Created using Sphinx 1.2.

 Navigation

 	
 index

 	
 previous |

 	django-skel 1.5 documentation

Running on Heroku

Normally, deploying a Django site would make you want to flip your desk:

[image: _images/flip.png]
Luckily for us, Heroku [http://www.heroku.com/] has made the process a
complete joy! If you’re aren’t familiar with Heroku–they are the best
web host, and you will love them if you don’t already.

django-skel ships with a production ready Heroku configuration module, and
this section will walk you through creating your Heroku app, and getting your
site running in production.

While this section is quite long, don’t be intimidated! It’s only long because
I’m explaining everything along the way–the reality of it is that deploying
your site this way really only consists of a couple commands.

If you’d like to read some official documentation on the topic, check out
Heroku’s Django documentation [https://devcenter.heroku.com/articles/django].

Step 1 - Create Your Heroku Application

The first step in getting your site running on Heroku is, as I’m sure you’ve
guessed, to create a Heroku app! Let’s do it now:

$ heroku create [your_app_name_here]

If you don’t specify an app name, one will be automatically assigned to you. I
like to name my apps explicitly, because I have a bunch of them, and it’s a lot
easier to track.

The next thing you’ll need to do is push your project code to Heroku. When you
ran the heroku create command above, the heroku command added a new Git
remote to your project. To push your code to Heroku, all you do is push to the
heroku remote:

$ git push heroku master

That will ‘deploy’ your code straight to Heroku! From now on, whenever you want
to deploy your code, just run this command.

Step 2 - Install the Addons

Now that you’ve got your Heroku application going, let’s install some Heroku
Addons [https://addons.heroku.com/]. Heroku is a modular system. The core of
Heroku allows you to run your code, but doesn’t provide any extra
infrastructure services.

To get things like PostgreSQL, memcache, RabbitMQ, etc.–you need to install
Heroku addons to do what you want.

Let’s install our required addons now–these addons are all free (you can
upgrade them at any time in the future). django-skel already supports all
of these, and requires most of them to function:

$ heroku addons:add cloudamqp:lemur
$ heroku addons:add heroku-postgresql:dev
$ heroku addons:add scheduler:standard
$ heroku addons:add memcachier:dev
$ heroku addons:add newrelic:standard
$ heroku addons:add pgbackups:auto-month
$ heroku addons:add sentry:developer

cloudamqp [https://addons.heroku.com/cloudamqp] is a hosted RabbitMQ
service. This is what makes our task queueing (via Celery) possible.

heroku-postgresql [https://addons.heroku.com/heroku-postgresql] is a hosted
PostgreSQL service that kicks ass.

scheduler [https://addons.heroku.com/scheduler] is a cron replacement.

memcachier [https://addons.heroku.com/memcachier] is a hosted memcache service.

newrelic [https://addons.heroku.com/newrelic] is the best application
monitoring tool ever created.

pgbackups [https://addons.heroku.com/pgbackups] is an excellent PostgreSQL
backup tool that stores backups automatically to S3, and lets you download and
manage your backups easily.

sentry [https://addons.heroku.com/sentry] is a pretty neat error aggregation
and searching tool that makes debugging issues simple.

Just for the record, if you’d like to upgrade any of these free addons, you can
do so by running the heroku addons:upgrade command. For example–to switch
from the free newrelic addon to their paid addon which has lots more features,
you can simply run:

$ heroku addons:upgrade newrelic:professional

Bam!

The last thing you’ll need to do is specify a default PostgreSQL database
(django-skel requires this). To do this, run:

$ heroku pg:info

And you should see a database name, something like HEROKU_POSTGRESQL_NAVY.
Once you’ve got that name, run:

$ heroku pg:promote HEROKU_POSTGRESQL_NAVY

To set your database as the default.

Step 3 - Configure the Environment

Heroku operates via environment variables. This is the preferred place to store
all those secret things (passwords, API keys, etc.) that you don’t want lurking
around your version control system.

django-skel requires several environment variables be set. To set these
variables, run the following commands:

Your AWS security credentials:
$ heroku config:add AWS_ACCESS_KEY_ID=xxx
$ heroku config:add AWS_SECRET_ACCESS_KEY=xxx
$ heroku config:add AWS_STORAGE_BUCKET_NAME=xxx

Replace 'woot' with the name of your project:
$ heroku config:add DJANGO_SETTINGS_MODULE=woot.settings.prod

A random long (40 characters or so) string:
$ heroku config:add SECRET_KEY=xxx

Note

Not sure what to use for your SECRET_KEY setting? You can always do
something like:

from random import choice
print ''.join([choice('abcdefghijklmnopqrstuvwxyz0123456789!@#$%^&*(-_=+)') for i in range(50)])

And copy the resulting string for usage :)

If you’d like to, you can also enable email support out of the box by setting
the optional email environment variables as well:

$ heroku config:add EMAIL_HOST=xxx
$ heroku config:add EMAIL_HOST_PASSWORD=xxx
$ heroku config:add EMAIL_HOST_USER=xxx
$ heroku config:add EMAIL_PORT=xxx

Note

EMAIL_HOST and EMAIL_PORT will default to the proper settings for
Google apps, so if you’re using that–feel free to leave those out.

Step 4 - Spin It Up!

Now that everything is configured and ready to go, let’s spin up our backend!

Instead of spinning up ‘servers’, Heroku allows us to spin up ‘dynos’, which
are essentially locked-down virtual server instances. The Procfile defined
at the root of your django-skel project defines our three service types:

	web - The service that runs our Django application behind gunicorn.

	scheduler - The service that runs a Celery worker and the Celerybeat
daemon.

	worker - The service that runs a Celery worker only.

To spin up a web dyno, run: heroku scale web=1. You can confirm that
everything is working by running heroku ps afterwards. That will run a
single web dyno.

If you’d like run a Celery worker, run: heroku scale scheduler=1. If you
need more than one worker, you can add additional power by spinning up the
worker dynos, via heroku scale worker=1.

Note

No matter what, never EVER spin up more than one scheduler. The
scheduler process runs Celerybeat, which schedules background tasks. Having
more than one scheduler running can cause serious duplicate task problems.
Instead, you should always have one scheduler running, and as many
worker instances as you need.

Need to add more web servers? No problem:

$ heroku scale web=100

Need to add more workers? No problem:

$ heroku scale worker=100

Need to check and see how many dynos you have running? Easy:

$ heroku ps

Step 5 - Deploy Your Static Assets

The last step in successfully deploying your production Django application is
to compress and then upload all your static assets to Amazon S3 (css, js,
images, etc.).

To do this, simply run the following commands:

$ heroku run python manage.py collectstatic --noinput
$ heroku run python manage.py compress

And that’s it!

Extra Reading

You are now running a best practices Django website, on top of Heroku, using
Amazon S3 to serve your static content!

If you’d like to learn more about Heroku, scaling, and stuff like that, you
should probably check out my blog [http://rdegges.com/] because I write
about this stuff all the time >:)

Oh, and also, read Heroku’s documentation [https://devcenter.heroku.com/] :)

Now... Go and be happy!

[image: _images/happy-overload.png]

 Copyright 2012, Randall Degges.
 Created using Sphinx 1.2.

 Navigation

 	
 index

 	django-skel 1.5 documentation

Index

 Copyright 2012, Randall Degges.
 Created using Sphinx 1.2.

 _static/file.png

_static/up-pressed.png

_images/yeah.png
CK

_images/skel.jpg

_static/down-pressed.png

_images/happy.png

_images/happy-big-smile.png

_static/not-bad.png
NOT BAD

_images/lets-do-this.jpg

_static/comment-close.png

_static/plus.png

_static/lets-do-this.jpg

_images/not-bad.png
NOT BAD

_static/computer-stare.png
=

_images/computer-stare.png
=

_static/comment-bright.png

_static/flip.png

_static/happy-overload.png

_images/flip.png

_images/happy-overload.png

_static/minus.png

_static/happy.png

_static/ajax-loader.gif

search.html

 Navigation

 		
 index

 		django-skel 1.5 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2012, Randall Degges.
 Created using Sphinx 1.2.

_static/up.png

_static/skel.jpg

_static/comment.png

_static/happy-big-smile.png

_static/yeah.png
CK

_static/down.png

